科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科
  • 人气指数: 6724 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2012-06-07
高兴
高兴
发短消息
相关词条
增加用户黏着度的五个方法
增加用户黏着度的五个方法
互联网产品设计12个理念
互联网产品设计12个理念
让用户快速上钩
让用户快速上钩
用户投资
用户投资
了解网虫消费者
了解网虫消费者
碎片时间调研数据
碎片时间调研数据
美国青少年线上隐秘生活
美国青少年线上隐秘生活
眼球跟踪在流行
眼球跟踪在流行
用户运营
用户运营
SeeWhy
SeeWhy
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
2017年特斯拉
2017年特斯拉
MIT黑客全纪录
MIT黑客全纪录
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

网站用户生命周期价值分析 发表评论(0) 编辑词条

目录

网站用户的生命周期价值分析 编辑本段回目录

Avinash Kaushik的博客中最近更新的一篇文章——Calculate Customer Lifetime Value,里面非常详细地论述了什么是网站用户的生命周期价值(Lifetime Value,简称LTV),及为什么要使用LTV这个指标。其中主要阐述的是在SEM及网站推广的过程中不要仅关注于一次访问(Visit)中的转化率(Conversion Rates)和CPA(Cost Per Acquisition)这些指标,计算用户在网站的整个周期中创造的总价值将更具意义,用户生命周期价值对于衡量网站的推广策略非常具有参考价值。

什么是用户的生命周期价值

 

生命周期是指一个主体从开始到结束的发展过程,所以网站用户的生命周期可以解释为用户从与网站建立关系开始到与网站彻底脱离关系的整个发展过程,而用户的生命周期价值就是在这个过程中用户为网站所带来的价值总和。

用户的生命周期可以分为4各阶段,如下图:

customer-LTV-curve

从用户的生命周期曲线可以看出用户在于网站建立关系期间一般会经历4个阶段,每个阶段都为网站带来不同的价值:

考察期:用户会试探性的偶尔来访问下网站,这个时候用户创造的价值比较低;

形成期:用户可能已经有点喜欢上你的网站了,他们会不定期的进入网站,并开始尝试做些交互,同时用户创造的价值飞速提升;

稳定期:用户成为了网站的忠实Fans,他们经常会光顾网站,不仅自己使用网站提供的服务,同时可能还会帮助宣传网站,这个用户创造的价值到达最高峰并保持相对稳定;

退化期:用户由于某些因素而开始与网站的关系产生裂痕,进而迅速破裂直到彻底离开,这个时期用户创造的价值迅速递减。

需要注意的是,用户不一定在到达稳定期后与网站的关系才会衰退,在任何时期,只要有某些因素影响了用户的满意度,用户的生命周期就可能进入退化期,进而彻底脱离该网站。

如何测量用户的生命周期价值

 

Avinash Kaushik在他的博客中例举的一些例子比较多的是从电子商务网站的角度,因为电子商务网站用户的生命周期价值更易于被衡量,可以直接计算用户从使用该网站开始在网站中的总消费金额、净利润等,基于这些指标通过细分用户的不同来源,可以计算不同推广策略的投资回报率(ROI),进而区分优劣。

这种基于用户生命周期价值的网站来源评价同样也可以用于一般的网站,但是普通网站一般没有交易和销售数据,也可能不是以网站的收益作为网站的目标,那么就不能用用户的交易金额作为评价用户价值的指标。如何定义一般网站的用户生命周期价值可以参考之前的几篇有关用户分析的文章:我们还是可以采用网站用户忠诚度分析中取自Google Analytics中评价用户忠诚度的4个指标——用户访问频率、最近访问时间、平均停留时间、平均浏览页面数。这些指标是所有网站都可以测量得到的,同时提高用户的忠诚度是所有网站的共同目标,忠诚用户对网站的价值是不言而喻的,他们不仅可以为网站带来持续的价值,同时在网站线下的品牌和口碑推广上起着关键的作用。那么这4个指标如何汇总来计算得到用户的总价值指标呢?可以参考用户综合价值评分体系这篇文章,使用层次分析法(AHP)得到各指标的权重,并通过加权求和的方式计算得出用户的总价值,用该结果就可以作为衡量用户生命周期价值的评价指标。

基于用户生命周期价值的分析

 

基于网站用户生命周期价值的计算结果,我们可以通过以下几个方面来对用户进行细分:

用户的访问来源:可以对通过计算搜索引擎、外部链接、社会化网络、直接登录等方式首次访问你的网站的用户的平均生命周期价值来比较哪些来源为网站带来了最多的有价值用户:

LTV-source-analysis

上图中柱状图表示从各来源进入我的博客的新用户数,折线图表示从各来源进来的用户的生命周期价值的平均(该来源带来的所有用户的生命周期价值总和/该来源带来的用户数,10分制)。从上图可以看出对于我的博客来说,搜索引擎带来了最多的用户(可能大部分网站都是类似的情况),而从带来的用户的生命周期价值平均值来看,外部链接是最有价值的,直接进入次之(可以用于评价网站线下推广所带来用户的价值),社会化网络再次之。所以我一般会把我看到的一些介绍网站数据分析相关的博客添加到我的外部链接表中,如果你也有网站分析相关的博客,或者认为我的博客还不错,也希望能把我的博客添加到你的外部链接表中。

用户首次访问中浏览的内容:基于内容的细分,比如以我的博客的文章分类进行细分。可以选取用户的生命周期价值排在前100的访问用户首次访问我的博客中访问了哪些分类目录下的文章:

LTV-content-analysis

上图柱状图表示首次访问我的博客浏览各分类文章的用户数,折线图表示生命周期价值排名前100的用户首次访问我的博客时浏览的各文章分类。这个结果就很明显了,“网站定量分析”这个内容分类为我带来了最多的新用户,同时也为我带来了最多的有价值用户,也是有价值用户转化率最高的分类目录,“个人观点分享”次之。

用户生命周期价值分析中需要注意的问题

 

最后不得不说的就是这个分析中存在的一大技术难点——如何定义一个用户的首次访问。

首先就是如何识别用户是首次访问,也就是该访问用户是新用户(New Visitor),大家估计已经注意到了在Google Analytics工具中的Visitors模块中有一项是根据New和Returning对用户进行细分,Google Analytics可以根据是否存在Cookie来进行细分,用户识别还有很多其他方法,可以参考我之前的文章——网站用户的识别,但不得不说无论何种方法对新用户的识别都存在一定的不准确性。

另外就是如何获取用户首次访问的数据的问题。一般网站保存的统计数据有一定的期限,或者网站的数据统计起步较晚,未能统计到网站的历史数据,尤其对于已经发展了一定时间的网站或者数据量比较大的网站来说,这类统计就更显困难重重,也许这个时候网站的数据仓库就可以发挥它的价值了,数据仓库的数据集成性和保留历史数据并且不易变更的特性让其有能力可以完成诸如此类的复杂数据获取。

via:webdataanalysis

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
1

标签: 网站用户的生命周期价值分析

收藏到: Favorites  

同义词: 网站用户的生命周期价值分析

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。