数独的起源编辑本段回目录
数独(日语:数独、 s ū doku )是一种源自 18 世纪末的瑞士,后在美国发展、并在日本发扬光大的数学智力拼图游戏。拼图是九宫格(即 3 格宽× 3 格高)的正方形状,每一格又细分为一个九宫格。在每一个小九宫格中,分别填上 1 至 9 的数字,让整个大九宫格每一列、每一行的数字都不重复。
数独的玩法逻辑简单,数字排列方式千变万化。不少教育者认为数独是锻炼脑筋的好方法。
如今数独的雏型首先于 1970 年代由美国的一家数学逻辑游戏杂志发表,当时名为 Number Place 。现今流行的数独于 1984 年由日本游戏杂志Nikoli 《パズル通信ニコリ》发表并得了现时的名称。数独本是「独立的数字」的省略,因为每一个方格都填上一个个位数。
中国玩家可以访问数独游戏网:http://www.sudokus.cn/
数独的历史编辑本段回目录
■你知道是最先发明数独的吗?
1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”的游戏,这个游戏是一个n×n的数字方阵,每一行和每一列都是由不重复的n个数字或者字母组成的。
■你知道是哪一本杂志最先推广数独的吗?
19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》 (Dell Puzzle Mαgαzines)开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”,在这个时候,9×9的81格数字游戏才开始成型。
■你知道“数独”这个游戏名称是怎么来的吗?
1984年4月,在日本游戏杂志《字谜通讯Nikoil》上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是惟一的”,并将这个游戏命名为“数独”(SO DOKU),从此,这个游戏开始风靡全球。
解法举例编辑本段回目录
先注意其中一个方格,限定该方格内可以填写的数字。
注意其中一列(或者其中一个小九宫格),寻找填写某数字的方格。
学过“资料结构”的人,可以尝试用Backtrack试试。
数独的通解方法及步骤:
根据以下方法可以确保最终得到数独的解,而且通过手工运算的时间基本可以控制在1.5个小时,不论难易程度,所以此方法可以作为取得数独答案的一般解法。1、根据横列、竖列和方格的限制条件排除各个点不可能的数字,并从1-9将各个可能的数字用小字体逐个写进每个空白的格子。(该步骤大约需要15-20分钟,这是求解的初始,务必确保没有遗漏)。
2、审视第一步骤的结果,如果发现某个空格只有一个数字,即确定该空格为这个数字。并根据该数字审视其相关的横列、竖列和方格,并划除相同的数字。(该情况出现的可能往往不多,除了较简单的数独题,但这是一个必要的过程,而且在随后的过程中要反复使用此方法。)
3、审视各个横列、竖列和方格中罗列出的可能的数字结果,若发现某一个数字在各个横列、竖列或方格中出现的次数仅一次,则可以确定该空格的解为此数字。并根据第二条的方法排除与此空格相关列或方格中相同的数字。
4、审视各个横列、竖列和方格中罗列的各个可能的结果,找出相对称的两个数组合的空格(或3个、4个组合),并确定这两个空格(或3个、4个)的数字只可能为这两个数字,即两个数字在这两个空格的位置可以交换,但不可能到该行、该列或该方格的其他位置。根据此结果可以排除相关列或方格罗列出相关数字的可能,并缩小范围。(该步骤处理的难度相对复杂,需要在积累一定经验的基础上进行,也是最终求解的关键)
5、反复使用2、3、4提到的步骤,逐步得到一个一个空格的解,并将先前罗列的各种可能的结果一个一个排除,使可能的范围越来越小,直至得到最后结果。
另外一种方法解初级的题目比较简单,就是:
1、把每一个横行里缺少的数字写到这一行的最右边。
2、把每一个竖列里缺少的数字写到这一列的最下边。
3、在刚才写的备选数字中,肯定有一个是行和列都缺的,这个数就可以填到里面去了。
4、如此反复第3步即可。
在线玩数独游戏地址:http://www.yx007.com/sdir/slist793c24.htm
经典益智游戏---数独
数独的历史
20世纪70年代,数独作为一种称为“数字拼图”的游戏开始出现在《Dell puzzle》书中。它实际上改编自“拉丁方”的数学概念,此概念可以追溯到中世纪,但18世纪的瑞士数学家莱昂哈德·欧拉最早对其进行了记录。“数字拼图”在美国并不是十分流行。但在1984年,数独落地日本并立即引起轰动。日本益智游戏出版商Nikoli的编辑Nobuhiko Kanamoto称其为“数字必须是单个”。后来简称为“数独”,意思是“单个数字”。
1997年,新西兰人韦恩·古尔德于日本旅行时发现了数独,并试图将其带到美国。他花了数年的时间编写计算机程序来生成迷题。古尔德将此益智游戏推介给《今日美国》,但遭到拒绝;但2005年4月被《纽约邮报》刊登。现在,数独已经出现在全球140种报纸上,移动电话用户甚至可以将数独益智游戏下载到其电话上。
数独的基础知识
数独是一种数字游戏,具体地说是数字 、1至9,但它真的跟数学关系不大。它与逻辑有关。除了数字1至9,您也可以使用字母表中的前9个字母或者包含9个符号的集合,它们都可以用来做同一个游戏。
数独的基础是一个九行九列的网格。您需要考虑三个部分:行、列和方框。

数独的要求是使用数字1至9填写每个包含9个方格的行、每个包含9个方格的列及每个包含9个方格的方框,且每个数字在每个部分只能使用一次。根据行、列和方框的交叉位置可判断出将填写数字的位置。因此,假设从一个空白的网格开始,需要根据数独规则在第1行、第2列及第4个方框中填入数字,则其大概情形如下:

第1行中每个数字仅出现一次,第2列和第4个方框与第1行的情况相同,尽管这些部分相互重叠。
当然,从一个空白的网格开始也不会增加多少难度。不过,对于已经填写了一些数字的数独益智游戏,您所要做的就是确定其他数字的填写位置。下面是一个真正的数独益智游戏的例子。

这是一个已填写了一些“线索”难度定级为
简易的数独益智游戏。
数独有多个难度级别,从容易到非常难,具体取决于用几个数字开始以及这些数字所在的位置。Michael Mepham作为伦敦《每日电讯报》的益智游戏创作人,将他的益智游戏(迷题)划分为以下等级:简易、中等、较难和最难。简单的迷题会在足够多的关键位置上放置足够多的数字,这样只需运用简单的逻辑就可以找到答案。每个迷题只有一个答案。
了解数独魅力的最好方法就是自己解答一个迷题。现在让我们解答一下上面的简单迷题,体会一下解答迷题的感觉。如果简单的迷题可以解答,那么复杂的也可以,只不过是更费时一些。
解答数独迷题
数独迷题并没有一个正确的开始位置。您可以闭上眼睛,将手指放在迷题上的任意位置从该处开始,就可以说这就是一个正确的位置。但是,从逻辑上看,最合理的开始位置是其中已填写了很多数字的某一行、列或方框。让我们看一下上页中的迷题:
第4列和第6列已经各填入了6个数字。让我们从第4列开始此迷题,此列已填好数字1、3、4、5、8和9。

因为1至9中的每个数字只能使用一次,所以我们只能在第4列中填入2、6和7。但是我们又不能将这些数字房子任意位置,因为在迷题的答案中,每一个数字都有一个特定的位置。该将各个数字填在哪里呢?为了找到答案,我们需要看一下与第4列交叉的行和方框。看一下位于第3行第4列(3,4)的空方格,以及与其交叉的行和方框:

为了填写位于第3行第4列的空方格,我们需要看一下第4列、第3行及第2个方框。
数独的简单的逻辑方法仅仅需要进行视觉分析,类似于:数字2能不能放在空方格中?不能,因为第2个方框已经有一个2了,而每个数字在每个方框中只能填一次。那么7能不能放在这里?第3行已经有一个7了,因此我们也不能将7放在这里。那么就剩下6了。第3行和第2个方框都没有6,所以我们知道,将6放在此单元格是正确的。我们已经填入了第一个数字!

将6放在此单元格是正确的。我们已经填入了第一个数字!
现在,我们看看如何填写第4列的其余位置,第4列还需要2和7。位于(5,4)的空方格与第5行和第5个方框交叉,而位于(7,4)的空方格与第7行和第8个方框交叉。

由于第5个方框中已经有一个7了,因此不能将7填入(5,4)方格中。这样,我们知道必须将2填入(5,4)方格,而将7填入(7,4)方格:

这样,我们就完成了第4列的全部数字,并且只用了简单的逻辑便完成了。由于这是一个简单的迷题,因此用这种方法可以填入大部分方格。但有时候迷题并非这样清楚。在答案不是很明显时,我们可以运用一些策略,而这些策略的根本,就是用铅笔做一些标记。
可能的数字
当数独迷题变得越来越难时,在一些空方格中用铅笔填入一些可能的数字变得很重要。但用铅笔标记的时候,并不是在猜数字。只是列举可能的答案。在玩数独时您不应该猜,否则,由于一切都是相互关联的,到最后您可能将整个迷题混成一团,这样您将不得不重新开始游戏。
为特定行、列或者方框中的每个方格用铅笔标记下所有可能的数字,我们就可以使用特定的策略将数字填入相应区域。现在我们看看第7行,它有四个空方格,需要填入数字4、5、6和9。

我们将用铅笔分别填入每个空方格的所有可能数字。那么,在数字4、5、6和9 中,哪一个可能适合(7,2)空方格?数字4不行,因为第2列已经有一个4了。5是可能的,因为第2行和第7个方框都还没有5。数字6也要排除,因为第7个方框已经有一个6了。但是9可以填在这里,因为第2行和第7个方框都没有9。因此我们用铅笔将“5 9”填入此方格:

按照同样的过程填写(7,5)方格,我们可以排除4和9(第8个方框中已经有这两个数字了),用铅笔填入5和6。至于(7,6)方格,我们也用铅笔填入5和6。剩下(7,8)方格,可以填入任何数字:

现在再看看您已经用铅笔填入的数字,您将注意到两件事情:首先,有两个方格中有相同的一对数字(并且仅有这两个数字);其次,4只出现了一次。我们现在从只出现在(7,8)方格中的4开始。使用我们将称为“出现一次”的策略,我们知道,如果4只能填入(7,8)方格,那么我们已经填好此方格,因为第7行需要一个4。第7行如下所示:

现在,我们看看重复的那一对:5和6(且仅限5和6)均能填入方格(7,5)和(7,6)。此时我们得到的是一组配对。5必须填入这两个方格中的一个,而6也必须填入这两个方格中的一个。使用配对策略,现在我们可以将5从方格(7,2)排除,因为我们知道5是不能填在那里的。这样,我们又填好了一个方格:

与此类似,“配对”排除策略也可以作为“匹配三元组”使用,也就是说您有三个方格具有同一组(三个一组)数字,并且每个方格中,只有这一组(三个一组)数字。
从我们已经用铅笔填入的数字来看,我们仍然不知道5应在哪个方格,6应在哪个方格,因此我们将用铅笔填入更多的数字。现在我们看看如何处理第8个方框,这个方框中有四个空方格,需要填入数字1、2、5和6。

其中已经有两个方格用铅笔填入了配对数字5和6,因此我们知道,在其他方格中,就可以将5和6从其他方框的可能答案中排除。这样就剩下1和2。这两个数字中任一个都可以填入方格(8,5),因为第8行和第5列中都没有1或2。但是第9行有一个2,因此我们不能将2填入方格(9,5)。看一下我们已经填入的部分:

注意到什么了吗?方格(9,5)中只有一个数字。使用Mepham所谓的孤数策略(可能是数独中最简单的策略了),我们知道1是方格(9,5)的答案。因为第8个方框中的1已经在(9,5)中,所以我们从方格(8,5)排除已填入的1,这样就只剩下一个2了——又解答了一个方格。

但是我们仍然不知道数字5和6的正确位置。解答第6列就会知道方格(7,6)中应填入的数字。第6列有三个空方格,其中有一个方格已经填入了所有可能的答案:

第6列需要填入数字1、5和6。对于方格(3,6),1和5是可能的答案(第3行已经有一个6了)。对于方格(5,6),唯一可能的答案是6,因为第5个方框已经有1和5了。

现在我们知道,方格(7,6)中只能填入5,方格(3,6)中只能填入1,而方格(7,5)中只能填入6。

由于行、列和方框之间的交叉是数独的关键所在,因此解答一个方格便可立即得出其他五个答案。到现在为止,我们已经运用了简单的逻辑,并且为给定的方格找到了一些可能的数字。在下一部分,我们将使用另外一种方法:为给定数字找到可能的方格。
生成数独:涉及数学
数独迷题是计算机生成的。在生成的过程中涉及到不少数学知识。
数独网格是一种拉丁方,即由按方格形状排列的数字(符号或字母)模式组成的数学对象,在整个方格中,每一个数字在每一行和每一列中仅出现一次。对于由9个数字组成的拉丁方,共可以生成 5,524,751,496,156,892,842,531,225,600个数字网格。但是由于数独除了体现拉丁方的9个数字以外,还增加了3x3的方框,因此仅可以生成6,670,903,752,021,072,936,960个数独网格。计算机程序会分析种种可能性,并以决定迷题难度的预设算法为基础,使用已有的某些数字和缺少的其他数字建立数独网格。
正确的方格和最难的迷题
这一次,我们不是为某一个方格寻找正确的数字,而是为某一个数字找到正确的方格。要实现此目的,我们需要画一些线。看一下第6个方框:

第6个方框需要一个4。现在让我们通过排除其不能出现的方框,找到它应该出现的位置。第5行中有一个4,因此我们将在这一行画一条线。同时第6行和第7及8列中都有一个4。我们也要分别在这些行和列中画线。

现在第6个方框中只有一个空方格,即方格(4,9),我们已经知道了4应填入的方格。

现在,我们通过画更多的线来找到数字6的填入位置。我们在第5行、第6行和第9列各画一条线,这样就只剩一个空方格了。可以将6填入方格(4,8)中。

现在您已经了解了自己解答迷题所需要的全部知识。
使用我们刚才讨论的简单逻辑和基本策略,还有数独爱好者开发的成千上万种其他策略,您将能够解决任何数独迷题。随着难度的增加,您需要的只是花费更长的时间,来求得每个方格的答案,因为有些方格只有在您求得其他特定方格的答案后才能确定其答案,有时候甚至要等你填完所有其他方格后才能确定。随着您玩的迷题越来越多,您将会得出自己的一套方法和策略。归根结底就是发现和培养你自己的数独逻辑感觉。
虽然数独是一种逻辑游戏,但是有些迷题却与逻辑思维背道而驰,而需要猜测,这对那些数独纯化论者而言,简直就是一件恐怖的事情。
最难的数独
现在,伦敦《每日电讯报》上Michael Mepham定级为最难级别的一些数独,仅运用逻辑思维已不能解答。从某种程度上看,这确实需要猜测,而这些在纯化论者眼里,是完全不可取的。鉴于收到的大量抗议和恶意中伤的信件,Mepham已经停止发布那些需要猜测才能完成的迷题。只要解答迷题还是这样的过程——在您开始猜测过程之前,必须获得足够的了解以便绝对确信再也没有线索了,那么解答这些迷题的过程仍然是有趣的。Mepham称此策略为阿里阿德涅之线(见注解),这种方法需要为某一给定方格选择两个可能的答案之一,然后一直往下解答,直到您找到真正的答案或者陷入僵局。如果您陷入僵局,则折回到这个猜测点并选择其他的数字。
在Michael Mepham的《Book of Sudoku 3》中,其中有一个很难的数独是这样开始的:

运用逻辑思维,您能得到下图所示的答案:

至此,实在没有更多的逻辑线索了,就此卡壳。现在我们唯一的选择就是猜测,并忽略我们用铅笔标记的数字,这样在证明猜测错误时,可以沿着这条“阿里阿德涅之线”重新回到我们的开始点。在只有两个选择的情况下选择某个方格,此时选对正确数字的几率是50%。现在我们回到第2行第1列并选择4。假设4是方格(2,1)的答案,那么我们通过扩展就可以得出很多其他方格的答案,但是我们最后会碰到一个问题。

如果方格(1,7)的答案是4,那么方格(6,7)的正确数字就应该是5。但是第6行已经有一个5。因此需要擦去刚才猜得的答案,回到方格(2,1)。这一次我们将选择5。

5确实是方格(2,1)的答案,它能帮助我们解答整个迷题。
虽然Mepham已经停止在其专栏中发布那些需要猜测才能完成的数独迷题,但是你仍然可以从Mepham的数独网站sudoku.org.uk访问这类迷题。
随着数独风日渐兴盛,已经涌现了很多不同的版本,用以制造难度更大的迷题。有一种“极限数独”是三维数独。只需将九个完整的数独网格排成一个三维立方体,就出现了一个三维数独迷题,这个三维立方体要求在三个互连的轴上有完整的行、列和方框。所有的规则都适用,但是你现在需要在多个平面上填入数字。为了将数字填入这个立方体,你需要分别为这9个网格找到答案。但是如果你下载了一个三维数独计算机程序(有十几个这样的程序),您就可以在完整的三维美景中完成这个迷题。
注:阿里阿德涅之线
在希腊神话中,克里特国王米诺斯要求人们为他养在迷宫中的怪物充当祭品。而年轻的骑士特修斯决定毁灭这个怪物,巧的是国王的女儿阿里阿德涅爱上了特修斯。她为特修斯设计了一条最安全的路线,这样一旦他将这个怪物杀死后,就可以沿着这条路回去:特修斯在去迷宫的路上边走边放线。这样,当他进入死胡同时,将根据手中的线返回原来的位置并选择另一条线路。当他到达怪物所在地时,这根线就标记了完整的踪迹,从而可以直接引导他走出迷宫。