黑洞的新新历史编辑本段回目录
黑洞的新新历史:联合进化论戏剧性地取代了“坏名声”
By Robert Roy Britt
作者:罗伯特·罗伊·布瑞特
Senior Science Writer
高级科学作者
28 January 2003
2003年1月28日
Black holes suffer a bad rap. Indicted by the press as gravity monsters, labeled highly secretive by astronomers, and long considered in theoretical circles as mere endpoints of cosmic evolution, these unseen objects are depicted as mysterious drains of destruction and death.
黑洞背着个坏名声。媒体说它是引力巨怪,天文学家给它贴上超神秘的标签,而且长久以来,在学术界,它仅仅被认为是宇宙进化的最后阶段,这些看不见的东西被描述成播撒死亡和毁灭的神秘之物。
So it may seem odd to reconsider them as indispensable forces of creation.
所以,把它们重新考虑成是创世的一个不可或缺的力量,感觉多少有些奇怪。
Yet this is the bright new picture of black holes and their role in the evolution of the universe. Interviews with more than a half dozen experts presently involved in rewriting the slippery history of these elusive objects reveals black holes as galactic sculptors.
但是对于黑洞和他们宇宙进化过程中所扮演的角色来说,这的确是一副闪闪发光的新图景。最近改写这些难以捉摸的家伙的历史的专家们,有半打以上接受了采访,他们所揭示出的黑洞,犹如宇宙的雕刻家。
In this revised view, which still contains some highly debated facts, fuzzy paragraphs and sketchy initial chapters, black holes are shown to be fundamental forces in the development and ultimate shapes of galaxies and the distribution of stars in them. The new history also shows that a black hole is almost surely a product of the galaxy in which it resides. Neither, it seems, does much without the other.
这个被修订的观点仍然包含着一些分歧很大的事实,模糊的段落和仅有概略的初步描述的篇章,它所表达出的理念是,黑洞是进化过程中的基础推动力,并且他们最终造就了星系的形状,也造就了星系内部恒星的布局。新新历史也展示出,一个黑洞几乎肯定是它所存在的那个银河系的产品。看起来,不可能有什么其他的解释了。
The emerging theory has a nifty, Darwinist buzzword: co-evolution.
这个新兴的理论有一个俏皮的,达尔文式的术语,叫做联合进化。
As a thought exercise, co-evolution has been around for less than a decade, or as much as 30 years, depending on who you ask. Many theorists never took it seriously, and no one had much evidence to support it. Only in the past six years or so has it gained steam. And only during the past three years have observations provided rock-solid support and turned co-evolution into the mainstream idea among the cognoscenti in both black hole development and galaxy formation.
作为一种思潮,联合进化理论已经出现了至少十年,或者将近30年——这基于你向谁提出这个问题。很多理论家从来没有严肃地对待过它,并且没有人手头有大量支持它的证据。仅仅是大约最近6年以来,它形成流派。只在近3年以来,联合进化论有了能够提供可靠支撑的观测结果,这也促使联合进化论在黑洞发展和星系形成两方面的专家那里,成为了主流观点。1
"The emerging picture of co-evolving black holes and galaxies has turned our view of black holes on its head," says Meg Urry, an astronomer and professor of physics at Yale University. "Previously, black holes were seen as the endpoints of evolution, the final resting state of most or all of the matter in the universe. Now we believe black holes also play a critical role in the birth of galaxies."
“关于共同进化中的黑洞和星系的新兴图景,彻底颠覆了我们对于黑洞的看法。”梅格·厄里说,他是位天文学家,同时也是耶鲁大学的物理学教授。“以前,黑洞被看成是进化的终点,在这个点上,宇宙中所有物质最终进入静止状态。现在,我们相信黑洞也同时在星系的产生中,发生着决定性的作用。”
The idea is particularly pertinent to explaining how massive galaxies developed in the first billion years of the universe. And it is so new that just last week theorists got what may be the first direct evidence that galaxies actually did form around the earliest black holesChicken-and-egg question
这个观点特别解释了关于巨大的星系们在宇宙形成最初的十亿年里的发展。这个观点是最最新鲜的,因为就在上一周,理论家们获得了第一个可能的直接证据,这个证据证实了星系的的确确是在最早的黑洞周围形成的,这终于给了那个鸡生蛋还是蛋生鸡的问题一个答案。
Like archeologists, astronomers spend most of their careers looking back. They like to gather photons that have been traveling across time and space since well before Earth was born, some 4.5 billion years ago. Rogier Windhorst, an Arizona State University astronomer, has peered just about as deep into the past as anyone, to an era when the universe was roughly 5 percent of its present age.
和考古学家一样,天文学家在他的职业生涯里也在不断地回溯历史。他们喜欢收集穿越时间,从地球诞生之时——大约45亿年之前——起开始旅行的光子。罗杰·文德霍斯特是亚利桑那州立大学的一位天文学家,他的观察从和每个人一样的视角,一直深入到宇宙只有现在年龄大约百分之五的时候。
Black Holes & Co-evolution: A Primer
黑洞与联合进化:一个初级读本
A merger may have triggered the output of energy in this galaxy, Centaurus A.
一次合并可能引起这个星系里的爆炸性能量输出,半人马座A。
The puzzle
迷
Very compact but bright objects called quasars, which can outshine a thousand normal galaxies, were abundant when the universe was less than 10 percent of its present age. Quasars are powered by black holes weighing more than a billion suns. How did they get so big so fast?
在宇宙只有现在十分之一的年龄时,拥有非常多的类星系,这些类星系体积紧凑,但非常亮,它们比一千个常规的星系更亮。类星系的能量来自那些比十亿个太阳还要重的黑洞。它们怎么做到这么快就达到如此庞大的重量的?
The front-running theory
正面奔跑理论1
Co-evolution holds that galaxies and supermassive black holes evolve together, each counting on the other for its ultimate heft. If true, and once fully understood, the new theory should help solve the growth puzzle.
联合进化意味着星系和特大质量黑洞共同进化,他们彼此依赖,达到自己最终的分量。如果这是真的,而且一旦它被彻底地理解,这个新理论就可以有助于解答关于质量增长的困惑。
The evidence
证据
Early quasars appear to be surrounded by large galaxies loaded with tons of gas, which fuels star formation and feeds the black holes, a report last week suggested.
一项发表于上周的报告暗示,早期的类星体呈现出的景观,是被负载着数以吨级的气体的巨大星系所围绕,这些星系能够为恒星的形成提供燃料,并且哺育黑洞。1
Black hole mass increases with galactic bulge mass.
黑洞聚集物与星系聚集物共同增长。1
Near the quasars in time are other, normal galaxies that have likely just passed through a quasar phase, as seen in images released earlier this month.
本月早些时候公布的一些图片显示,在类星体周围适时出现的,是其他那些正常的,刚刚经历了类星体阶段的星系。
Central bulges of stars in many galaxies, such as our Milky Way, are directly related to the masses of the black holes buried inside, as detailed in June of 2000. A galaxy's dimensions seem tied to its black hole's dietary habits.
根据2000年6月公布的一些细节来看,许多星系里,星星的中心都在膨胀,比如我们的银河,这些膨胀与潜藏在它们内部的黑洞的质量直接相关。一个星系的规模看起来与它的黑洞的“饮食习惯”紧密捆绑在一起。
Most black hole mass seems to come from direct consumption (called accretion) of gas, indicating that a black hole needs a surrounding galaxy to grow.
大多数黑洞聚集物看起来是直接从气体(叫做冲击层)的消耗中间来的,这表明一个黑洞的成长需要周围有一个星系。
Dark matter is studied in part by examining hot gas clouds like this one.
对暗物质的研究在某种程度上依赖于考查类似的热气体云。
The dark horse
黑马
A halo of mysterious dark matter is thought to infuse the space surrounding each of the bulge-packing galaxies. The invisible gravity generator would play a crucial role in galaxy and black hole construction.
一个围绕着暗物质的神秘光环是,它被认为是充满着每一个星系周围的空间。这个看不见的引力制造者可能在星系和黑洞的构建过程中扮演着重要的角色。
The also-rans
竞争中的失败者
If co-evolution reigns, as most researchers believe, then two older (but not-dead-yet) theories are wrong: that a galaxy forms first and directs the development of a black hole; or that a black hole is generated first, providing the seed around which a galaxy can coalesce. It is also possible that different types of galaxies form by different means, and that co-evolution will only be found to describe one path to galactic adulthood.就像大多数研究者相信的那样,如果联合进化论盛行,那么有两个旧理论(但还没有完全丧失活力)就是错的:星系建立在先,并且导向着黑洞的发展,或者黑洞生成在先,在它周围为星系的形成提供种子。也有可能,不同类型的星系建立的方式不同,联合进化仅仅是解释了星系走向成熟的道路之一而已。
-- Robert Roy Britt
罗伯特 罗伊 布瑞特
Earlier this month, Windhorst and a colleague, Haojing Yan, released a Hubble Space Telescope image showing the most distant "normal" galaxies ever observed.
本月的早些时候,文德霍斯特和他的一个同事,严浩静(音译),发布了哈勃天文望远镜拍到的一些图片,这些图片展示出了曾经被观察到的大多数遥远的“正常”星系。
Though stretched and distorted by the technique used to spot them (an intervening galaxy cluster was used as a "gravitational lens"), the newfound galaxies, Windhorst's team assures us, resemble our own Milky Way. They are seen as they existed more than 13 billion years ago, within 1 billion years of the Big Bang.
尽管新发现的星系被技术处理扭曲和拉伸了——一个介入的星系团被作为引力透镜——文德霍斯特的团队向我们保证说,它和我们的银河是类似的。他们看上去存在于宇宙大爆炸的最初10亿年之内,距离现在超过130亿年。1
Practically side-by-side in time, discovered in separate observations made as part of the Sloan Digital Sky Survey, are compact but bright objects known as quasars. These galaxies-to-be shine brilliantly because, researchers believe, each has a gargantuan black hole at its core, whose mass is equal to a billion suns or more, all packed into a region perhaps smaller than our solar system.
实际上与此同时,在索隆的数字天空测量的分离观测部分里,这种紧凑但是明亮的物体已经被发现,并被认知为类星体。研究者们认为,这些将会称为星系的物质之所以那样灿烂闪亮,是因为它们中的每一个的内核里,都拥有一个庞大的黑洞,这个黑洞的质量相当于十亿个太阳或者更多,它们被打包塞进了一个比我们的太阳更小的空间里。
The resulting gravity pulls in nearby gas. The material is accelerated to nearly the speed of light, superheated, and swallowed. The process is not entirely efficient, and there is a byproduct: An enormous amount of energy -- radio waves, X-rays and regular light -- hyper-illuminates the whole scene.
最终的地心引力不断吸收附近的气体。这些物质的加速度几乎接近光速,温度极高,并且被蕴含在内部。整个过程并不是特别有效率,而且还有副产品:一个庞大的能量团——无线电波,X射线和常规的光——高度照亮着整个区域。
Quasars also seem to be surrounded by halos of dark matter, a cryptic and unseen component of all galaxies. Co-existing around and amongst all this, researchers are coming to realize, is a collapsing region of stars and gas as big or larger than our galaxy.
类星体看上去也被一些暗物质组成的“环”围绕着,这是所有星系都有的一个神秘的,看不见的组成部分。研究者们逐渐开始意识到,这些周边以及内部的共同存在的物质,是一个和我们的星系一样大,甚至更大的,星星与气体的崩塌区域。
It was no coincidence that the announcements of the two findings -- distant quasars and normal galaxies --were made together at a meeting of the American Astronomical Society (AAS) Jan. 9. Co-evolution was on the minds of the discoverers.
在1月9日,美国天文学会的一次会议上,两个发现——关于遥远的类星体和常规的星系——被同时公布,这并不是巧合。联合进化已经在发现者们中间深入人心。
Among co-evolution's significant impacts is its ability to render mostly moot a longstanding chicken-and-egg question in astronomy: Which came first, the galaxy or the black hole?
联合进化的一个重大影响在于它引起了天文学界的一个长久以来的关于鸡和蛋的问题:谁先出现,是星系还是黑洞。
"How about both?" Windhorst asks. "You could actually have the galaxy form simultaneously around a growing black hole."
“如果是同时呢?”文德霍斯特问道,“实际上在一个正在成长的黑洞周围,都同时有一个星系。”1
Urry, who was not involved in either finding but was asked to analyze them, explained it this way: "We believe that galaxies and quasars are very intimately connected, that in fact quasars are a phase of galaxy evolution. In our current picture, as every galaxy forms and collapses, it has a brief quasar phase."
厄里并没有参与这两个发现的过程,但他被请求分析它们,他是这样解释的:“我们相信星系和类星体有着直接的联系,事实上,类星体是星系发展过程中的一个阶段。在我们目前所掌握的星系建立和毁灭的图景中,存在着一个短暂的类星体阶段。”
So when a quasar goes dormant, what's left are the things we associate with a normal galaxy -- stars and gas swirling around a central and hidden pit of matter.
因此当一个类星体趋于休眠,留下来的就是我们通常和一个正常的星系联系起来的东西——星星和气体,他们围绕着一个隐藏着物质的大洞形成一个漩涡。
Quasars are cagey characters, however. (The term is short for quasi-stellar radio source; astronomers first mistook the objects for stars within our galaxy in the early 1960s.) When one is firing, its brightness can exceed a thousand normal galaxies. The quasar outshines its entire host galaxy so significantly that scientists have not been able to see what's really causing all the commotion. That veil is lifting as you read this, however, as telescopic vision extends ever backward in time and data is fed into powerful new computer models.
无论如何,类星体是非常灵敏的家伙。(术语叫做类星射电源,在20世纪60年代早期,天文学家们误以为它们和我们星系中的恒星一样。)当一个类星体爆发时,它的亮度可以超越一千个常规的星系。类星体中所有的星系都大放光芒,以至于科学家不能分辨到底是什么导致了这所有的爆发。无论如何,正如你读到的这样,随着望远镜的视线拓展和计算机模式的数据处理能力日益更新和强大,面纱正在被揭开。
Evolving idea
进化中的概念
Demonstrations of co-evolution began to emerge in the mid-1990s when researchers found hints that the existence of a significant black hole at the center of a galaxy was related to the galaxy's shape, says Martin Haehnelt of the University of Cambridge. Only galaxies with a spherical bulge-like component appear to accommodate supermassive black holes.
剑桥大学的马丁·海因内特告诉我们,联合进化的案例在90年代中期开始出现,那时研究者们发现了一些迹象,在一个星系的中心存在一个巨大的黑洞,它与星系的形状相关。只有拥有球形膨胀组件的星系才可能容纳质量超大的黑洞。1
Our Milky Way, if it could be viewed edge on, would display a good example of one of these galactic bulges: Imagine the profile of a stereotypical flying saucer, though with a wider and flatter disk. The Milky Way is smaller than many galaxies, however, and it has a correspondingly less massive black hole -- roughly 2.6 million suns worth. It almost surely once had a quasar phase, astronomers say.
我们的银河,如果可以从边缘看向中心,就会呈现出一个这种星系凸起形态的好例子:想象一下从侧面看一个传统意义上的飞碟,尽管它有一个又宽又平的圆盘。但是,银河比许多星系都要小,而它就相应地拥有一个规模相对比较小的黑洞——大概相当于26亿个太阳。天文学家已经几乎确认,它曾经存在一个类星体的阶段。
At any rate, in the mid-1990s no one knew for sure how prevalent black holes were. Theory and some observational data pointed to the likelihood that they were ubiquitous.
至少,在20世纪90年代中期,没有人确定地知道一般的黑洞是什么样子的。理论和一些观测数据则指向他们曾经普遍存在的可能性。
Not So Fast ...
没有这样快……
"I think it is still unclear whether black holes play any role in the formation of the first galaxies."
“我认为到底黑洞在最初的星系形成过程中扮演什么样的角色,这仍然是不清楚的。”
-- Sir Martin Rees
马丁·瑞斯爵士
University of Cambridge
剑桥大学
Then, in the year 2000, astronomers found solid evidence that black holes lurk deep inside many and probably all galaxies that have the classic central bulge of stars. Further, an analysis showed a direct correlation between the mass in each black hole and the shape and scope of the bulge and the overall size of the galaxy.
然后,在2000年,天文学家发现了可靠的依据,在许多——甚至全部——拥有传统意义上的中心凸起的星星的星系,它们里面都蕴含有黑洞,一个分析家展示了在每个黑洞的质量和形状之间,以及星系的凸出程度和整体规模之间,存在正相关的关系。
At an AAS meeting in June of 2000, John Kormendy of the University of Texas at Austin, presented evidence for 10 mammoth black holes whose masses were related to their galactic bulges. Kormendy worked on a large team of researchers led by University of Michigan astronomer Douglas Richstone. This along with other studies in surrounding months by other teams served as a collective turning point for co-evolution, several researchers now say, advancing it to a stable quantitative footing.
2000年6月,在一次天文学研究会议上,奥斯汀德克萨斯大学的约翰·可蒙迪拿出了证据。这些证据表明,有10个黑洞的质量与他们的星系的凸出程度相关。可蒙迪是由密歇根大学的天文学家道格拉斯·瑞切斯通率领下的一个大型研究团队的一员。一些研究者现在认为,这件事与在它前后几个月由其他的团队做出的研究成果,共同成为了联合进化理论的转折点,它们使这个理论开始有了坚实的定量的基础。
"Subsequently the idea of the co-evolution of galaxies and supermassive black holes became more widely discussed and accepted," Haehnelt says.
“随后关于星系和超大质量黑洞联合进化的概念开始被更广泛的讨论和接受。”海因内特说。
Evidence continues to mount. In 2001, two separate teams showed that many smaller galaxies that don't have bulges also do not seem to contain significant black holes.
证据在继续累加。在2001年,两个不同的团队发布了研究结果,展示了许多小一些的并且没有中心凸出的星系看上去也没有包含着重要的黑洞。
Over the past six months or so, other important studies have emerged, providing independent confirmation to some of the initial work. Haehnelt: "It becomes more and more clear that supermassive black holes can significantly change the structure and evolution of galaxies."
在过去的大约6个月中间,其他的重要研究浮出水面,它们为某些初步的研究提供了独立的佐证。海因内特说,“我们可以越来越清楚地看到,超级质量黑洞可以显著地改变星系的结构和进化。”
The first large-scale scientific meeting devoted to co-evolution -- a sure sign of a theory coming into its own -- was held just three months ago, sponsored by the prestigious Carnegie Observatories.
第一个的完全专注于联合进化的科学会议——一个理论形成的确定性的标志——在三个月之前刚刚召开,它是有享有盛誉的卡内基天文台资助的。
There are many variations on the basic theory of co-evolution. Each version attempts to explain a vexing fact: In the blink of a cosmic eye -- just a half a billion years -- invisible spheres of matter were born, and several gained the mass of a billion or more suns and were driving the shape and texture of swirling agglomerations of newborn stars.
在联合进化的基础理论之上,衍生出了很多不同的流派。每一个版本都尝试去解释一个让人困扰的事实:在仅仅5亿年中——在宇宙的概念里,这相当于一眨眼的功夫——看不见的球形物质诞生,它们中的一部分获得了十亿个或者更多个太阳的规模,而且从形状和质地上不断向着产生新星的螺旋凝聚体推进。1
Co-evolution is not a done deal. Perhaps, some have suggested, a huge black hole simply collapses out of a pre-galactic cloud and serves as a ready-made engine to drive further galaxy development. Even staunch supporters of co-evolution say there are still viable theories, not yet refutable, putting the immense black hole in place first, and others that have the galaxy solely responsible for driving the formation of a black hole.
联合进化并不是一个已经完成了的过程。一些人已经提出,也许一个巨大的黑洞只是一个前星系云崩塌的结果,它只是作为一个对于推动未来的星系发展的县城的引擎存在。即使是特别坚定的联合进化理论的支持者也认为,还存在其他可行的理论——而且目前还很难被驳倒——巨大的黑洞首先形成,而另一些人认为,星系先形成,然后它推动了黑洞的形成。
If black holes did grow incrementally, it is unclear whether cooperative construction reigned from the beginning, or if it kicked in after some certain amount of mass was gathered.
假如黑洞的确在不断地长大,现在还不清楚的是,究竟联合的结构是一开始就起到了支配性的作用,还是当规模到达一定的程度之后才开始生效的。
Next Page: The First Black Holes
下一页:最初的黑洞
Smack in the middle of the cosmic dark ages, the first stars are born. They die young, populating a crowded universe with relatively puny black holes. How did they grow?
在宇宙的黑暗期的中期,最初的星星突然出现了。在一个拥挤的,充满着相对弱小的黑洞的宇宙中,他们往往很早就衰亡了。他们是怎么长大的呢?
"I think it is still unclear whether black holes play any role in the formation of the first galaxies," said Cambridge's Sir Martin Rees, who has collaborated with Haehnelt and who long ago authored some of the first scientific papers on the question.
“我想,黑洞究竟在最初的星系形成过程中,扮演着什么样的角色,这一点,还不清楚。”剑桥的马丁·瑞斯爵士说,他是海因内斯的合作者,而且他很久以前就发表过第一批关于这个问题的科学论文。
"Indeed," Sir Martin says, "there is a lot of debate about whether black holes can form in very small galaxies, and whether there is a link between the 'small' holes that form as the endpoint of the evolution of massive stars and the holes of above a million solar masses that exist in the centers of galaxies."
“事实上,”马丁爵士说,“黑洞是不是从非常小的星系中形成的,而作为巨大恒星演进的终点的‘小’黑洞,他们和存在于星系中央的,质量比一百万个太阳还要大的黑洞之间,是不是有联系,关于这些有很多的争论。”
Another dark matter
另外一个暗物质1
Infusing itself into the equation is an utter unknown: dark matter. This as-yet-undetected stuff permeates all galaxies, researchers believe. A halo of it surrounds our Milky Way. Dark matter does not interact with light, but it does possess great gravitational prowess, acting as invisible glue to help hold galaxies together.
某种物质一直在把它自己填充进联合进化的程式中间,这是我们完全不知道的,那就是暗物质。研究者们发现,这些还没有被探测到的东西弥漫在所有的星系中间。在我们的银河系周围,它们形成了一个环。暗物质不会反射光,但它的确拥有非常强大的吸引力,所起到的功能类似于一种看不见的使星系维持成一个整体的粘合剂。
Dark matter is taken into account in the leading co-evolution models, but only in a general, overall sense. Some researchers, however, think dark matter, more than a black hole, is clearly connected to a galaxy's birth and development.
暗物质被认为是联合进化模式中的主导因素,但仅仅是在一般的,笼统的意义上。然而,一些研究者认为暗物质与星系诞生和发展之间的联系比黑洞更加明确。
Just last week, the first possible direct evidence was announced for dark matter halos around early quasars. The finding, by Rennan Barkana of Tel Aviv University and Harvard astronomer Abraham Loeb, appears to be the first glimpse at the anatomy of the most distant quasars. Importantly, it supports the fundamental ideas of co-evolution, Loeb said. But it also makes it clear that dark matter will not be denied a chapter in any book about the theory.
在上周,第一份可能是早期类星体周围的暗物质环的直接证据刚刚公布。这一发现是由特拉维夫大学的热娜·巴卡那和哈佛大学的天文学家亚伯拉罕·勒布共同完成的,它显示了最遥远的类星体的最初一瞬间的剖面。重要的是,它支持了联合进化的基础理论,勒布说。但是它同时也使得一个事实更加明确,那就是,暗物质是任何一本关于联合进化的书中,不可或缺的一章。
Laura Ferrarese, a Rutgers University physicist, analyzed the new dark matter finding. She says it shows that a supermassive black hole, the stars around it, and an all-encompassing dark matter halo are working in concert to build structure.
劳拉·弗拉雷斯是美国罗格斯大学的物理学家,她分析了最新发现的暗物质。她说,它显示了一个特大质量黑洞,星星围绕在它的周围,而吸收一切的暗物质环同心协力地去构成某种结构。
An Artist's View
一个艺术家的观点
A black hole scarfs gas like a pig at a trough. Slovenly habits generate a byproduct of electromagnetic energy, from radio waves to X-rays, that illuminate the entire pig pen, masking what's going on. That is what makes a quasar.
一个黑洞被气体围绕,就好像一只被食槽环绕着的猪。惰性形成了一些电磁能副产品,从无线电波到X射线,它们照亮了整个猪圈,而掩盖了正在发生的事情。那就是,究竟是什么造就了一个类星体。
IMAGE: Aurore Simonnet, Sonoma State University
图片提供:阿洛尔·西蒙内特,索诺马州立大学
Taken with other evidence, Ferrarese sees dark matter's role as more significant, or at least more obvious, than many theorists have considered.
基于另一个证据,佛罗伦斯认为暗物质扮演的角色比其他许多学者曾经认为的更加重要,或者至少更加明显。
"There is an observational correlation between the mass of the black hole and the mass of the dark matter halo, not necessarily the mass of the galaxy itself," she said.
“观测的结果显示,黑洞的质量和暗物质环的质量关系更紧密,而星系本身的质量倒不一定是这样。”她说。
Through this haze of fuzzy information and diverse thinking, theorists must work to explain a stark and staggering fact: Somewhere between 300 million and 800 million years after the Big Bang, the first black holes were born and managed to each gulp down a mass of more than 1 billion suns.
穿越这些信息的迷雾,并且从各个角度去思考,学者们必须去解释一个朴实而令人惊愕的事实:在大爆炸发生的300万年到800万年之间,最初的黑洞诞生了,而且它们努力地吞噬了超过十亿个太阳的质量。
Now before you ponder how these Sumo wrestlers of the early universe must have thrown their weight around in any evolutionary wrestling match, consider this: A black hole typically holds much less than 1 percent of the overall mass of the galaxy it anchors.
现在,在你考虑这些早期宇宙中的相扑运动员如何在任何进化的摔跤比赛中甩掉它们的分量之前,请先考虑这个:一个标准的黑洞拥有的质量远远少于它所对应的的星系的百分之一。
Shining light on the dark ages
在黑暗的时代闪闪发光
The early history of black holes -- what went on in the 500 million years leading up to objects observable with current technology -- is tied back to the development of the very first stars. Speculating about it requires first rewinding to the very beginning.
黑洞的早期历史——在今天的技术能观测到的物质出现之前,这一过程大约持续了500万年——需要回溯,和最初的恒星紧紧捆在一起。人们猜测这需要我们首次回溯到最初的起点。
When the universe was born, there was nothing but hydrogen, helium and a little lithium. All this raced outward for about 300,000 years before anything significant happened. The gas was too compacted and therefore too hot to be stable. Gradually, the stuff of space expanded and cooled enough for gas to "recombine and stabilize to neutral states," as scientists put it.
当宇宙诞生的时候,除了氢、氦和少量的锂元素之外,什么也没有。所有这些向外喷涌了大约30万年,这期间没有任何大事发生。气体被压缩得太厉害,而且太热,因此,非常的不稳定。渐渐地,空间膨胀并且冷却到足够让气体“重新组合并且稳定地保持着中性的状态”。一个科学家这样描述道。
The hydrogen was still too hot to form stars, so more expansion was needed. A long stretch of boring darkness ensued, during which some ripples began to ruffle the otherwise smooth fabric of space.
氢原子仍然过热,不能形成恒星,因此需要更多的膨胀。接着,是一个长长的沉闷的黑暗延伸时期,在这个过程中,一些小小的涟漪开始划过宇宙这平滑的幕布。
"For 300 million years, nothing happened," explains Windhorst, the Arizona State University astronomer. "The universe is just sitting there. Then all of a sudden the first stars began to shine."
“在300万年中间,什么也没发生。”文德霍斯特解释说,他是亚利桑那州立大学的天文学家,“宇宙只是待在那儿。然后,出乎意料地,第一颗星星开始闪耀了。”
The exact timing for first light is not known. But the ensuing 500 million years are the so-called dark ages of cosmology. Or more precisely, they represent the illuminations of the universe and the elimination of the dark ages.
人们并不知道第一缕光线出现的时间。但是在宇宙学中间,接下来的500万年被叫做黑暗时期。或者更精确地说,这是宇宙中光明出现而黑暗时期推出历史舞台的时期。
"The tail end of that is what we're seeing," Windhorst says of the latest Hubble and Sloan survey observations.
“我们正在看着这个时期的末端。”文德霍斯特描述着哈勃与索隆观测项目的最新进展。
The first black holes
最初的黑洞
Scientists once imagined galaxies forming by a sort of monolithic collapse, in which a giant cloud of gas suddenly fell inward. The modern view is one of "hierarchical merging," in which bits and pieces build up over time. A rough outline of how it all went down is fairly well agreed upon.
科学家们曾经想象星系是由某种整体的崩塌形成的,在这个过程中,极大量的气体云突然向内收缩。现代的观点认为,这是某种“分层合并”,在合并的过程中,各种散碎的物质逐渐聚合。人们对于他们如何全部都尘埃落定,都有一个概略的认同。
Which Black Hole Anchors a Galaxy?
哪一个黑洞转化成了一个星系?
"It may be a question of being in the right place at the right time. It could be accidental."
“如何在合适的地点,合适的时间发生,这可能是个问题。它可能是个意外。”
-- Roger Blandford
罗杰·布兰福德
Caltech
加州理工学院
The initial ripples in space drew together into knots and filaments, locally and over broader scales. Individual clumps of gas collapsed, and stars were born.
宇宙中最初的涟漪聚拢成为点与线,它们犹如星星之火分布在整个宇宙的各个部分。个别的气体团块剧烈收缩,星星出现了。
The first stars must have been massive, perhaps 200 times the weight of our Sun or more. They would have been almost pure hydrogen -- the primary ingredient of thermonuclear fusion, which makes a star shine.
最初的恒星一定拥有巨大的质量,可能相当于200个太阳或者更重。它们可能曾经几乎完全是由氢元素构成的,氢元素是热核融合的主要原料,正是这种反应让星星放出光芒。
Massive stars are known to die young. Some survive just 10 million years (the Sun is 4.6 billion years old and just reaching middle-age). A colossal explosion occurs, sending newly forged, heavier elements into space. Remaining material collapses. A mass equal to many stars might end up in a ball no larger than a city. The result: a stellar black hole. These object are so dense that nothing, not even light, escapes once inside a sphere of influence known as an event horizon.
巨大恒星生存的时间非常短。其中的一些仅仅存在了一千万年(太阳已经存在了46亿年,而且还仅仅步入中年)。一个巨大的爆炸重现,并且以新的方式锻造,比较重的元素在宇宙中产生了。剩下的材料都崩塌了。一个相当于许多个星星加起来那么大的家伙,最终可能缩小成不比一个城市更大的球体。结果就是:一个星星的黑洞。这些东西的密度是那样大,以至于在它们的势力范围——也就是黑洞表面——之内,任何东西,甚至光线,都不能逃离。
Stellar gravity wells can weigh as little as a few suns. But the inaugural versions might have been 100 times as massive as the Sun or more.
星球的重力井的重量只相当于几个太阳。但是最初的阶段,它们的质量可能比100个太阳还要大。
During all these tens and hundreds of millions of years, more stars are being born from the detritus of the first stars. Locally denser regions of gas contract. Stars form groups of perhaps a few dozen, which might be attracted to other star clusters. Eventually, clusters of many thousands of stars develop and began to look and behave like something that could be called a sub-galaxy. Some probably harbored growing black holes near their centers.
在接下来的以千百万年计的漫长时光里,更多的星星从最初的恒星的碎片中产生。气体在有限的空间里聚集收缩。恒星们形成了集群,每个集群里大约包含几打星星,这些集群可能会被其他的星团所吸引。最后,数以千计的恒星构成的星团发展成为从外表到行为都可以在某种程度上被称为准星系的东西。其中的一些可能在中心孕育着正在成长中的黑洞。
Here, theory struggles. Intuition might suggest that many of these huge stellar black holes simply merged until one central object attained enough mass to drive the shape and future development of its galaxy.
在这里,理论发生了分歧。直觉上可能会认为许多这样巨大的恒星黑洞只是简单地融合,直到某个中心物体获得足够的质量来推动它所归属的星系的形状和未来的发展。
If that intuition is right, however, which black hole became the center?
但是,如果那个直觉是正确的,哪个黑洞可以成为中心呢?
"It may be a question of being in the right place at the right time," says Roger Blandford, a theoretical astrophysicist at Caltech. "It could be accidental."
“在正确的时间,正确的地点,这可能是个问题。”罗杰·布兰德福德说,他是加州理工学院的天体物理理论学家。“这可能是个意外。”
Next Page: Mega Mergers
下一页:宏大的兼并
Collisions of whole galaxies would lead to black hole mergers. Not a bad way to generate fireworks and fuel growth.
整个星系的冲撞将会导致黑洞的合并,这是形成烟火和燃料增长的好办法。
In fact, nobody knows for sure if the first super-sized black holes developed from a series of mergers -- several dozen solar masses becomes 200, then 1,000, then 10,000, and so on -- or if they collapsed from the condensing gas cloud. "Do they start from 100 solar masses or a million solar masses? That's a good question," Blandford said. "My personal guess is that they start from a few hundred solar masses, but that's a much more speculative business."
事实上,没有人确切地直到,如果最初的超大规模的黑洞是由一系列的合并发展而来的——几打太阳的质量开始变成200个,然后1000个,然后10000个太阳的质量,诸如此类的——还是由冷却凝结的气体云崩塌而来。“它们到底是从100个太阳的质量开始,还是从100万个太阳的质量开始?这是个好问题。”布兰德福德说,“我个人猜想他们是从几百个太阳的质量开始的,但是这种想法太投机了。”
Elusive middleweights
难以捉摸的中量级选手
Galaxy birth and development is a never-ending process, and clues to early black hole evolution are spread throughout our own galaxy and around the universe. Astronomers therefore examine modern-day cosmic creatures for clues to their ancestral roots.
星系的诞生和发展是一个永无休止的过程,而早期黑洞进化的线索散布在我们自己的星系和整个宇宙中间。天文学家因此通过检查今天的宇宙产物,去寻找它们远古祖先的线索。
Black holes are everywhere, for one thing. Millions of the stellar sort could litter our galaxy alone, based on early discoveries of a few.
首先,黑洞无处不在。在较早前,人们发现,只有有限的几个星星的种类,而现在的发现认为,成千上万的不同种类的星球散乱而孤独地存在于我们的星系中。
If the mightiest black holes indeed developed out of the garden variety, then there ought to be some evidence lying around our cosmic backyard in the form of middleweight versions, one line of thinking goes.
一种观点认为,如果最强大的黑洞确实是从种类繁多的星球花园里发展出来的,那么在我们宇宙的后院周围,应该存在着关于中等量级黑洞存在的某种证据。
A handful of astronomers are convinced they have found a couple of these missing links, and in fact are arguing their case this week at a conference in California. But the case of the middleweights is among the most controversial in all of astronomy.
少数天文学家相信,他们已经发现了几个失落掉的中量级黑洞的环节,事实上,在本周于加利福尼亚举行的一个会议上,他们为他们的案例而争辩。但是,中量级黑洞的案例,是天文学领域中最具有争议性的部分。
"The existence of middleweight black holes is one of the big unanswered questions in this field," said Cambridge's Haehnelt. "The recent claimed detections are still very controversial."
“在这个领域,中量级黑洞是否存在,是最大的尚未解答的问题之一。”剑桥大学的海因内特说,“最近公布的探测结果仍然非常具有争议性。”
Regardless, most experts agree middleweights would represent, at best, pocket change to the fully grown black hole, something like Microsoft's initial millions in annual revenue compared to the billions that poured into its coffers during the tech boom.
更多的专家并不关注这些声音,他们认为中量级黑洞最多也就是成熟黑洞的一个零头而已,在某种程度上,就好比微软最初每年几百万的收入和进入繁荣期之后,那些奔流不息的数亿十亿计的进账。
Collision in Progress
发展中的冲突
Located a "mere" 300 million light-years away, these colliding galaxies nicknamed The Mice will eventually merge into a single giant galaxy. Such mergers can generate a quasar phase of galactic evolution.
这些位于300万光年以外的一个小区域里的碰撞着的星系被人们称作老鼠,它们最终会并入一个巨大的星系。这些合并会在星系进化的过程中促成类星体阶段的到来。
Researchers on both sides of the middleweight argument mostly agree that the bulk of a jumbo black hole doesn't come through early mergers. Once a critical mass is achieved -- and this appears to coincide with a point in time prior to what astronomers can see today -- a black hole seems to gain most of its mass by swallowing gas from its environment.
关于中量级星系问题,持对立观点的双方,差不多都认为那些巨大的黑洞并不来自于早期的黑洞。这种观点曾经占到压倒多数,这看起来是在天文学家能够拥有今天的能力之前,在那时候,一个黑洞看起来是通过在它的环境中吸收气体来获得它巨大的质量的。
Amid all the squabbling over middleweights looms the likelihood of much larger merger candidates.
所有这些围绕中量级黑洞的争论最终指向另外一种可能性,那就是,比它们大得多的东西。
Mega-mergers
百万倍的合并
Galaxy merging is almost a given. It is thought to have contributed significantly to the past growth of the Milky Way, for example. The early universe, having not yet expanded much, was incredibly crowded. Like racked billiard balls, nascent galaxies were more likely to collide.
星系合并几乎是个给定的理论。比如,它被认为是为银河系的形成做出了巨大的贡献。早期的宇宙还没有膨胀的那样厉害,它非常非常地拥挤。就像台球开球一样,最初的星系看起来非常容易碰撞。
If two galaxies merge, so should their black holes. Recent computer modeling speculates the event would be violent, unleashing tremendous light as gas is trapped between the two black holes and then rushes toward the more massive one.
如果两个星系合并,那么它们的黑洞也会合并。最近的计算机模式推测,这种合并事件是非常火爆的,它们释放出巨大的光芒,两个黑洞之间的气体被严重压缩,然后冲向更多的巨大的黑洞。
Galactic mergers take millions of years, so they can't readily be observed in progress.
星系的合并花了好几百万年,所以它们不容易在这个过程中被观察到。
A recent peek into a nearby galaxy provided evidence for the scenario, however. At the heart of galaxy NGC 6240 astronomers found not one but two black holes, roughly 3,000 light-years apart and closing on an apparent merger course. The Chandra X-ray Observatory observations show that NGC 6240 is actually two galaxies that started joining forces about 30 million years ago.
但是,最近我们对于一个附近星系的惊鸿一瞥,为这个过程提供了证据。在ngc 6240星系的心脏部位,天文学家发现了不是一个二十两个黑洞,它们之间大约相距3000光年,并且由于一个显而易见的合并过程而逐渐靠近。钱德勒射线探测仪的探测结果表明,ngc6240的确是两个从3000万年前开始合并的星系构成的。
Feeding the Beast
饲养野兽
"Interactions and mergers are an excellent way to dump a lot of gas into the center of a galaxy."
“交互反应和合并是一个在星系中央释放大量气体的很棒的方式。”
-- Richard Larson
——理查德·拉尔森 耶鲁大学在这里输入译文
Other indications of mega-mergers come from relatively nearby quasars.
其他的百万级合并的标志来自于相对近一些的类星体。
Richard Larson, a Yale astronomer who studies star formation in galactic nuclei, says galaxies can go through several quasar phases during their lives. In studying quasars at more reasonable distances (which also means not so far in the past), he consistently sees signs of recent galaxy mergers or other large-scale interactions that served as triggers.
理查德·拉尔森,一个耶鲁的天文学家,他研究星系核中的恒星结构,他说,星系在整个生命史中,可能会经历好几个类星体的阶段。他研究过一些从时间上距离我们更合理的——也就是说,距离我们近一点的类星体,在这个过程中,他不断地看到最近星系合并的迹象,或者说,能够成为触发活动的大型交互反应。
"Interactions and mergers are an excellent way to dump a lot of gas into the center of a galaxy," Larson explains. "The first thing this gas does is suddenly form huge numbers of stars."
“交互作用和合并是把大量的气体抛进星系中央的一个绝佳的方式。”拉尔森解释说,“这些气体立刻就突然形成了一定数量的恒星。”
Bursts of intense star formation seem to last about 10 million to 20 million years around a typical quasar.
在一个典型的类星体周围,剧烈活动的恒星构造的爆发看起来会持续大约一两千万年。
Some of the gas that does not go into generating stars falls on in to the black hole. This violent phase of consumption is the one that is readily observed, because the castoff energy turns the incoming gas and dust into a glowing cloud. Eventually, the chaos settles and the new stars become visible. Later, the quasar itself is left naked. Finally, it goes dormant.
一些没能在恒星形成过程中发挥作用的气体进入了黑洞。这个剧烈消耗的阶段是很容易被观测到的,因为这些被丢弃的能量把那些进入黑洞的气体和尘埃变成了一个灼热的云团。终于,混沌开始尘埃落定,新的恒星开始显现。然后,只剩下类星体自己。最后,它进入休眠。5
Further Reading
拓展阅读
Filaments and nodes of matter that led to the first galaxies.
形成最初星系的蛛丝马迹
Galaxy Birth
星系的诞生
OUR TANGLED UNIVERSE : How the First Galaxies Were Born
我们纠结的宇宙:最初的星系是如何诞生的
22 May 2001: Were Sherlock Holmes a cosmologist, he might have said, "It's filamentary, my dear Watson."
2001年5月22日:如果夏洛克·福尔摩斯是个宇宙论者,他可能会说,“它是单纤维状的,我亲爱的华生。”
EARLY RIPPLES: New Observations of Early Universe Help Confirm Theories of Formation
早期的涟漪:针对早期宇宙的最新观测结果为星系形成理论的建立提供帮助
23 May 2002: The most detailed glimpse ever gained of the early universe shows ripples in space back before there were any stars. This finding adds support to theories of how the universe began in an initial Big Bang, inflated rapidly, then developed the first galaxies.
2002年5月23日:我们从早期宇宙获得的最细节的图像显示,在没有任何星星存在的时候,宇宙空间中的涟漪。这个发现对于宇宙是如何从最初的大爆炸中开始的,它迅速膨胀,然后发展处第一批星系。
Star Birth
恒星诞生
HOW A STAR IS BORN: Clouds Lift on Missing Link
一颗恒星是如何诞生的:消失的一环——星云升起
16 January 2001: Using a surprisingly simple technique, astronomers have illuminated a missing link in our understanding of the earliest period of star formation.
2001年1月16日:使用一种简单到让人吃惊的技术,天文学家已经揭示了我们对于恒星形成的最早的阶段中间,消失的一环。
SOME HELP : How Dark Matter Helped Build the First Star
一点帮助:暗物质是在第一颗恒星的形成过程中是如何发挥作用的
15 November 2001: Astronomers have created a computer simulation showing how the first star in the universe might have formed, helping to plug a gap in understanding of the timeline of the early cosmos.
2001年11月15日:天文学家创造出一种计算机模型,它显示了宇宙中的第一颗恒星可能的形成方式,这有助于在关于早期宇宙的时间线上打下一根楔子。
Black Holes
黑洞
CRAZY: Black Hole Appears, Disappears, and May Return
疯狂的事:黑洞出现了,消失了,并且可能回来了
20 January 2003: When working with big numbers and data from faraway places, small errors can have huge consequences. Black holes, for example, can seem to pop in and out of existence, only to possibly materialize yet again.
2003年1月20日:当我们在从遥远地方来的巨大的数字和海量数据中工作的时候,会发生“失之毫厘,谬以千里”的事情。例如,黑洞看起来似乎是个偶然事件,它没有实体,只是有可能重新成为实体。
MERGERS: How Galactic Collisions Fed Black Holes
合并:星系间的撞击是如何哺育黑洞的?
05 June 2001: The crowded early cosmos offered many free lunches to a growing galaxy. Space was tight. Collisions were frequent. Astronomers figure that the galaxy gobbling that resulted also served as a gravy train for black holes. A new image supports the idea.
2001年6月5日:早期拥挤的宇宙为成长中的星系提供了很多免费的午餐。撞击是经常发生的。天文学家认为,星系们狼吞虎咽的结果同时也为黑洞提供了一大笔飞来横财。一幅新的图片为这一论调提供了支持。
SPIN: Like Stars, Black Holes Rotate
旋转:黑洞象星星一样旋转
01 May 2001: While scientists are nearly certain that matter spins violently into the vortex of a black hole, new research shows that a black hole itself can rotate, just like a star.
2001年5月1日,当科学家们几乎可以肯定物质会疯狂地旋转着进入黑洞的漩涡时,新的研究显示,黑洞自己也可以旋转,就像星星一样。
MUSIC: The Sounds of Black Holes
音乐:黑洞之声
09 April 2002: A CD of black hole music most likely can't compete with Britney Spears or the Soggy Bottom Boys, but a new study shows these venerable gravity instruments produce complex tunes whose underlying principles are remarkably similar to pop, bluegrass, classical or any other style you might think of.
2002年4月9日:一张黑洞音乐的CD光盘几乎不可能和小甜甜布兰妮或者湿底男孩的CD竞争,但是一项新的研究显示,这些宝贵的重力装置生产着复杂的旋律,它们潜在的节奏明显和流行音乐、蓝莓音乐,古典音乐或你能想到的任何一种音乐都非常相似。
Archive of Black Hole News>>>
黑洞新闻档案
Dark Matter
暗物质
WHAT IS IT? Good question
它是什么?这是个好问题
08 January 2002: "We’ve known that it exists for more than 25 years," says astronomer Virginia Trimble of the University of California Irvine. "But we don’t know what the hell it is."
2002年1月8日:“我们已经知道,它已经存在了25年以上了。”加州大学欧文分校的天文学家费吉尼亚·特林布说,“但是我们不知道它究竟该死的是什么。”
NEW STUDY: Mystery Matter Helped Build First Galaxies
新研究:神秘物质帮助最初的星系建立
22 January 2003: Possible direct evidence has been provided illustrating the theory that the earliest galaxies developed quickly -- and to surprisingly massive proportions -- with the help of mysterious and invisible dark matter
2003年1月22日:为揭示以下这种理论提供了可能的直接证据:最早的星系在神秘的看不见的暗物质的帮助下发展迅速,并且惊人地庞大
FINDING SOME: First Direct Observation of Dark Matter
正在发现一些:对于黑洞的最早的直接观测结果
22 March 2001: More than three dozen elusive white dwarf stars have been found in a halo of objects surrounding our galaxy, marking the first direct evidence for previously unseen "dark matter" and lending support to a widely held theory that there is much more to the universe than meets the eye.
2001年3月22日:在我们星系的外围光晕中,发现了三打以上难以捉摸的白矮星,这成为了以前看不见的暗物质存在的第一个证据,同时,它也为一个被广泛认同的理论提供了支持,那就是,在宇宙里,在我们视力难以到达的地方,还有很多这样的白矮星。
Larson figures this scenario for black hole feeding probably applies to the most distant quasars, too. And it supports the notion that black holes do in fact gain most of their bulk by accreting gas.
拉尔森关于哺育黑洞的计算方法可能同样也适用于最遥远的那些类星体。它同时也提供了一个概念,就是黑洞的确通过气体的加积作用增长了它们的体积。
Fresh spin
新鲜的旋转
To sort out the specifics of co-evolution, astronomers will need to see more of the universe and inspect it in greater detail. The prospects are good, especially toward the end of this decade.
为了给联合进化进行特点分类,天文学家将需要看到宇宙中更多的部分,并且更细致地审查它。前景很乐观,尤其是对于近十年来说。
A project called LISA (Laser Interferometer Space Antenna) would search for "gravitational waves" kicked up in the aftermath of black hole mergers, perhaps proving that such colossal collisions do occur. The NASA satellite is tentatively slated for launch in 2008.
一个名叫LISA的工程(激光干涉仪宇宙触须)将会寻找黑洞合并后释放出的引力波,这可能会证实,那种巨大的碰撞确实发生过。NASA(美国国家航空和宇航局)的一颗人造卫星正在准备2008年的发射。
A vastly improved understanding of dark matter is also needed. Several telescopes should contribute to this effort, but since no one knows what the stuff is, forecasting any sort of resolution is highly speculative.
对于暗物质的理解需要大大地提升。一些望远镜应该会对这一努力的实现有所帮助,但是因为没人知道它究竟是什么,任何对结果的预测都是非常投机的行为。
And the specific mechanics of black holes must be investigated fully. For now, theorists don't even know exactly how matter is shuttled inward and consumed. Much of this work can be done by observing the nearby universe.
同时,对于黑洞的特殊理学必须被彻底地探究。对于现在来说,理论家们甚至不清楚这些物质是如何飞来飞去的。很多这样的工作是可以通过观察附近的宇宙空间来完成的。
Roger Blandford, the Caltech theoretician, has suggested a novel way to prove that early mergers were not serious contributors to black hole growth. Blandford says two primary parameters characterize black holes. Mass is the most obvious. A more subtle measurement is spin.
罗杰·布兰德福德是加州理工学院的学者,他提出了一个新奇的方法,这一方法证实了早期的合并对黑洞的成长并没有什么贡献。布兰德福德认为有两个主要的参数控制着黑洞的特性。质量是最明显的,一个更敏感的衡量标准是旋转。
Yes, black holes seem to spin. The idea only emerged from theory to relatively firm observations in May of 2001, and it remains unproven.
是的,黑洞看起来是旋转着的。这个观念在2001年5月从理论成为了显而易见的现实,但它还没有经过验证。
But if spin can be proved a universal aspect of black holes, then the rate of spin can be used to infer something very important about a black hole's history.
但是如果旋转可以被证实是黑洞的一个通常的面目,那么,旋转速度就可以用来推断一个黑洞历史上一些重要的事。
"If black holes grow by merging, by combinations of black holes, they should spin down quite quickly," Blandford explains. "This then becomes a fairly good argument that, if you can show that black holes really are spinning rapidly, they probably didn't grow by merging, but would have grown by accreting gas."
“如果黑洞是依靠合并来成长的,在合并的过程中,他们的旋转速度很快就会变慢。”布兰德福德解释说,“然后这就会成为一个非常突出的悖论,如果你可以展示黑洞确实旋转得很快的话,他们就可能不是依靠合并成长的,但是可能会因为吸收气体而成长。”
Most important, vision simply must be extended further back in time, beyond the quasars that are now being studied, says Karl Gebhardt, a University of Texas astronomer and a member of Richstone's team.
最重要的是,我们的视野很简单地被在时间里不断地向前拓展,超过我们现在已经开始研究的类星体。卡尔·葛布哈特,德克萨斯大学的天文学家和瑞切斯通团队中的一员。
"They're essentially the tip of the iceberg," Gebhardt says of the objects so far observed. "We are projecting from what we see in a very special number of objects to the whole sample. That is part of the problem of the uncertainty now."
“他们本质上是冰山的一角,”葛布哈特评论那些被观察到的遥远的物体。“我们在我们看到的物体样本中,选择了非常特殊的数目的物体。那只是我们现在不确定的问题中的一部分。”
Hubble may extend current vision a bit, but the next boon in deep-space discovery will likely have to wait for the James Web Space Telescope, planned for launch in 2010. Billed as the "first-light machine," the JWST will be Hubble on steroids, and it should muscle its way to a better view of a good portion of the cosmic dark ages.
哈勃望远镜的视线可能会比现在拓展一点,但对于宇宙深处下一步的探索将很可能不得不等着吉姆斯网络太空望远镜,它计划在2010年发射。它被宣称是“第一道光的机器”,吉姆斯网络望远镜将会比哈勃看得更远,而且它会自行调整轨道,以便能够在观察宇宙中尚不为人所知的时代的过程中,获得一个更好的视角。
It is ironic to think that when JWST goes up, many astronomers and cosmologists will be banking on black holes to light the way to a scientific account of the earliest epoch of the visible universe, an obscure time they have long dreamed about and can now, almost, see.
想到当吉姆斯望远镜发射之后,许多天文学家和宇宙学家将会指望黑洞来照亮关于最早的可视的宇宙研究的路途,这真是件讽刺的事,他们长久以来奢望着的时刻,现在终于几乎要到来了。