科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科
  • 人气指数: 2108 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2009-03-18
admin
admin
发短消息
相关词条
数学
数学
数论
数论
工业设计
工业设计
智慧产业
智慧产业
符号位
符号位
算法设计与分析
算法设计与分析
银行家算法
银行家算法
比例计算法
比例计算法
关键路径
关键路径
先来先服务
先来先服务
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
2017年特斯拉
2017年特斯拉
MIT黑客全纪录
MIT黑客全纪录
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

目录

概念编辑本段回目录

 

       贪婪算法是一种不追求最优解,只希望得到较为满意解的方法。贪婪算法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪算法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
       例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪算法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。

 

问题实例编辑本段回目录

 

1.装箱问题

问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。 
若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:
{
    输 入 箱 子 的 容 积 ;
    输 入 物 品 种 数 n ;
    按 体 积 从 大 到 小 顺 序 , 输 入 各 物 品 的 体 积 ;
    预 置 已 用 箱 子 链 为 空 ;
    预 置 已 用 箱 子 计 数 器 box_count 为 0 ;
    for(i=0;i
    {
        从 已 用 的 第 一 只 箱 子 开 始 顺 序 寻 找 能 放 入 物 品 i 的 箱 子 j ;
        if ( 已 用 箱 子 都 不 能 再 放 物 品 i )
        {
            另 用 一 个 箱 子 , 并 将 物 品 i 放 入 该 箱 子 ;
            box_count++;
        }
        else
        将 物 品 i 放 入 箱 子 j ;
    }

上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。

程序:

# include
# include
typedef struct ele
{
    int vno ;
    struct ele*link ;
}
ELE ;
typedef struct hnode
{
    int remainder ;
    ELE*head ;
    Struct hnode*next ;
}
HNODE ;
void main()
{
    int n,i,box_count,box_volume,*a ;
    HNODE*box_h,*box_t,*j ;
    ELE*p,*q ;
    Printf(“ 输 入 箱 子 容 积 n ”);
    Scanf(“%d ”,&box_volume);
    Printf(“ 输 入 物 品 种 数 n ”);
    Scanf(“%d ”,&n);
    A=(int*)malloc(sizeof(int)*n);
    Printf(“ 请 按 体 积 从 大 到 小 顺 序 输 入 各 物 品 的 体 积 : ”);
    For(i=0 ;
    ivno=i ;
    for(j=box_h;j!=NULL;j=j->next)
    if(j->remainder>=a)break ;
    if(j==NULL)
    {
        j=(HNODE*)malloc(sizeof(HNODE));
        j->remainder=box_volume-a ;
        j->head=NULL ;
        if(box_h==NULL)box_h=box_t=j ;
        else box_t=boix_t->next=j ;
        j->next=NULL ;
        box_count++;
    }
    else j->remainder-=a ;
    for(q=j->next;q!=NULL&&q->link!=NULL;q=q->link);
    if(q==NULL)
    {
        p->link=j->head ;
        j->head=p ;
    }
    else
    {
        p->link=NULL ;
        q->link=p ;
    }
}
printf(“ 共 使 用 了%d 只 箱 子 ” , box_count);
printf(“ 各 箱 子 装 物 品 情 况 如 下 : ”);
for(j=box_h,i=1;j!=NULL;j=j->next,i++)
{
    printf(“ 第%2 d 只 箱 子 , 还 剩 余 容 积%4 d , 所 装 物 品 有 ; n ”,I,j->remainder);
    for(p=j->head;p!=NULL;p=p->link)
    printf(“%4 d ”,p->vno+1);
    printf(“ n ”);
}
}

 

2.马的遍历

问题描述:在8×8方格的棋盘上,从任意指定的方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。马在某个方格,可以在一步内到达的不同位置最多有8个,如图所示。如用二维数组board[ ][ ]表示棋盘,其元素记录马经过该位置时的步骤号。另对马的8种可能走法(称为着法)设定一个顺序,如当前位置在棋盘的(i,j)方格,下一个可能的位置依次为(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),实际可以走的位置尽限于还未走过的和不越出边界的那些位置。为便于程序的同意处理,可以引入两个数组,分别存储各种可能走法对当前位置的纵横增量。

  4     3  
5         2
     马    
6         1
  7     0  
对于本题,一般可以采用回溯法,这里采用Warnsdoff策略求解,这也是一种贪婪法,其选择下一出口的贪婪标准是在那些允许走的位置中,选择出口最少的那个位置。如马的当前位置(i,j)只有三个出口,他们是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分别走到这些位置,这三个位置又分别会有不同的出口,假定这三个位置的出口个数分别为4、2、3,则程序就选择让马走向(i-2,j+1)位置。由于程序采用的是一种贪婪法,整个找解过程是一直向前,没有回溯,所以能非常快地找到解。但是,对于某些开始位置,实际上有解,而该算法不能找到解。对于找不到解的情况,程序只要改变8种可能出口的选择顺序,就能找到解。改变出口选择顺序,就是改变有相同出口时的选择标准。以下程序考虑到这种情况,引入变量start,用于控制8种可能着法的选择顺序。开始时为0,当不能找到解时,就让start增1,重新找解。细节以下程序。

程序:

贪婪算
贪婪算

贪婪算

 

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 贪婪算

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。