科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科
  • 人气指数: 2091 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2009-03-18
admin
admin
发短消息
相关词条
Intel Smart Connect
Intel Smart Connect
THX
THX
电容式触摸屏
电容式触摸屏
USB 3.0
USB 3.0
超速计算机芯片
超速计算机芯片
相变存储技术
相变存储技术
超级计算机模拟图
超级计算机模拟图
笔记本常见接口
笔记本常见接口
UEFI
UEFI
WebP
WebP
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
2017年特斯拉
2017年特斯拉
MIT黑客全纪录
MIT黑客全纪录
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

目录

概念编辑本段回目录


分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。
分治法解题的一般步骤

(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是分治策略的基本思想。

 

 

算法设计模式编辑本段回目录

 

它的一般的算法设计模式如下: 
Divide-and-conquer(P)  
1. if |P|≤n0  
2. then return(ADHOc(P))  
3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk  
4. for i←1 to k  
5. do yi ← Divide-and-conquer(Pi) △ 递归解决Pi  
6. T ← MERGE(y1,y2,...,yk) △ 合并子问题  
7. return(T) 
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时,直接用算法ADHOc(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。 
根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样才为适当?这些问题很难予以肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取k=2。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。 
分治法的合并步骤是算法的关键所在。有些问题的合并方法比较明显,有些问题合并方法比较复杂,或者是有多种合并方案,或者是合并方案不明显,如例5。究竟应该怎样合并,没有统一的模式,需要具体问题具体分析。 
分治法的复杂性分析  
从分治法的一般设计模式可以看出,用它设计出的程序一般是一个递归过程。因此,分治法的计算效率通常可以用递归方程来进行分析。为方便起见,设分解阈值n0=1,且算法ADHOC解规模为1的问题耗费1个单位时间。又设分治法将规模为n的问题分成k个规模为n/m的子问题去解,而且,将原问题分解为k个子问题以及用算法MERGE将k个子问题的解合并为原问题的解需用f(n)个单位时间。如果用T(n)表示该分治法Divide-and-conquer(P)解规模为|P|=n的问题P所需的计算时间,则有:  
(1) T(1) = 1  
T(n) = kT(n/m) + f(n)  
算法复杂性中递归方程解的渐进阶的解法介绍的解递归方程迭代法,可以求得(1)的解: 
logm(n-1)  
(2)T(n) = n^(logmK) + ∑ (k^j)*f(n/(m^j))  
j=0 
注意,递归方程(1)及其解(2)只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常,  
我们可以假定T(n)是单调上升的,从而当mi≤nn0 
由于我们关心的一般是最坏情况下的计算时间复杂度的上界,所以用等于号(=)还是小于或等于号(≤)是没有本质区别的分治法的几种变形。 


 

几种分治的方法 编辑本段回目录


 

1.二分法 dichotomy一种每次将原问题分解为两个子问题的分治法,是一分为二的哲学思想的应用。这种方法很常用,由此法产生了许多经典的算法和数据结构。 


2.分解并在解决之前合并法 divide and marriage before conquest一种分治法的变形,其特点是将分解出的子问题在解决之前合并。 


3.管道传输分治法 pipelined divide and conquer一种分治法的变形,它利用某种称为“管道”的数据结构在递归调用结束前将其中的某些结果返回。此方法经常用来减少算法的深度

 

举例编辑本段回目录

   

 

                        分治算法

国际象棋棋盘上某个位置的一只马它是否可能只走63步正好走过除起点外的其他63个位置各一次?试设计一个分治算法

 

算法步骤:
1 :从左上角起,给棋盘编号(1,1),(1,2),。。。。。。(8,8),计为集合qp。tracks记录走过的每个点. (可以想象为坐标(x,y))

2:设起点为(1,1),记为 当前位置 cp,

3:搜索所有可走的下一步,根据“马行日”的走步规则,可行的点的坐标是x坐标加减1,y坐标加减2,

或是x加减2,y加减1; (例如起点(1,1),可计算出(1+1,1+2),(1+1,1-2),(1-1,1+2),(1-1,1-2),(1+2,1+1),(1+2,1-1),(1-2,1+1),(1-2,1-1) 共8个点), 如果没有搜到可行点,程序结束。

4:判断计算出的点是否在棋盘内,即是否在集合qp中;判断点是否已经走过,即是否在集合tracts中,不在才是合法的点。(在上面的举例起点(1,1),则合法的下一步是(2,3)和 (3,2))

5:将前一步的位置记录到集合tracts中,即tracts.add(cp);选择一个可行点,cp=所选择点的坐标。

6:如果tracts里的点个数等于63,退出程序,否则回到步骤3继续执行。

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 分治算法

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。