科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科
  • 人气指数: 3199 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2009-03-11
admin
admin
发短消息
相关词条
数学美
数学美
外星人
外星人
梅森素数
梅森素数
系统相对论
系统相对论
自制核反应堆
自制核反应堆
机器人系列组图
机器人系列组图
参政议政
参政议政
系统科学
系统科学
《阿凡达》背后科学
《阿凡达》背后科学
爱情环
爱情环
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
2017年特斯拉
2017年特斯拉
MIT黑客全纪录
MIT黑客全纪录
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

太阳星云
太阳星云
太阳星云(Solar Nebula)通过凝聚和吸积形成太阳太阳系内天体的气团和弥散的固体物质。大约50亿年前开始塌缩,后来形成太阳系的气尘云。一团云状的星际气尘(“太阳星云”)由于自己的重力而混乱崩溃。扰乱的原因也可能是附近的一颗超新星发出的震波造成的。

目录

[显示全部]

形成编辑本段回目录

云团崩溃后,中心不断升温并压缩,热到可以使灰尘蒸发。初期的崩溃时间估计少于10万年。中央不断压缩使它变为了一颗质子星,原先的气体则绕着它公转。大多数气体逐渐向里移动,又增加了中央原始星的质量。也有一部分在自转,离心力的存在使它们无法往当中靠拢,逐渐形成一个个绕着中央星体公转的“添加圆盘”并向外辐射能量慢慢冷却。

太阳星云三叶星云
三叶星云
第一个制动点质子星与绕着转的气体可能不够稳定,由于自身的重力而继续压缩,这样产生了双星。 气体逐渐冷却,使金属岩石和(离中央星体远处)冰可以浓缩到微小粒子。(比如气体又变回成灰尘。)添加圆盘一形成,金属便开始凝结(对于某个流星的同位素测量,估计是在45.5到45.6亿年前);岩石凝结得较晚(44到45.5亿年前)。

灰尘粒子互相碰撞,又形成了较大的粒子。这个过程不断进行,直到形成大圆石头或是小行星。快速生成。较大的粒子终于大到能产生不可忽略的重力场,它们的成长也越来越快。它们的重力使小粒子的加盟变得容易也变得更快,终于搜集到的质量与它们在公转轨道上运行应有的质量相符,使运行变得稳定。因为大小由距离中点的距离和质子星体密度和化学组成决定。按理论来说,太阳系内层中像月球大小的小行星是太大了,外层需要地球的1到15倍大小的星体。在火星与木星处有一个较大的质量跳跃:来自太阳的能量能使近距离的冰变为水蒸气,所以固态的合成的星体与太阳的距离可以大大超过临界值。这类小行星体需要二千万年形成,最远的组成时间最长。

第二个制动点。质子星多快形成,形成多大。星云冷却100万年后,这颗星产生了强劲的太阳风,将星云中剩余的气体全部吹散。如果质子星够大,它的重力将能吸进星云中的气体,变成气态巨型星,反之,则成为一个岩石质或冰质星体。

这一刻,太阳系是由固态星,质子星,气态巨型星构成的。“小行星体”不断碰撞,质量也渐渐变大。千万到亿年之后,最终形成了10多个运行于稳定轨道的行星,这就是太阳系。在漫长历史中,这些行星的表面可能被极大地改变,被碰撞什么的。(比如大部分由金属组成的水星月球。)

来源编辑本段回目录

太阳星云猎户星云
猎户星云
一般认为,银河系的第一代恒星几乎全是由氢组成的,而第二、第三代恒星在形成的初期便含有许多种较重的核素,基于在太阳上存在许多种核素,天文学家们认为太阳是银河系中的第二或第三代恒星,太阳上的那些较重的核素就是来自银河系中的第一代恒星。天文观测表明,在银河系中存在着大量的双星系或多星系恒星,即两个或多个非常接近的恒星不仅环绕银河系的中心运行,还彼此相互环绕运动。

假设银河系中某个双星系或多星系中的一个质量是太阳的10倍以上的恒星在80亿年前发生超新星爆发,则其喷射出的大量物质会以球面的形态扩散开来,显然,以这种方式扩散开来的物质由于以极快的速度飞向四面八方,最终甚至有可能冲出银河系,故其不大可能形成太阳星云。但如果该恒星的伴星(质量是太阳的8倍以上)彼此相距较近,在附近超新星爆发产生的巨大冲击作用下,其外层的大量物质被剥离并以相对较慢的速度呈团状飘向远处,假如被剥离物质的总量足够大,则这些被剥离的团状物质经过漫长的岁月后,就有可能在银河系中逐渐演化成一个新的星云——太阳星云,并最终从中诞生出银河系的第二、第三代恒星——太阳,以及太阳系中包括地球在内的各大行星。

演化编辑本段回目录

球粒陨石是太阳星云冷凝吸积的直接产物,其中的顽辉石球粒陨石具有非常特殊的岩石矿物学特征(如CaS, MgS等各种亲石元素硫化物的出现,Sio在金属相的存在等),是揭示太阳星云在极端还原条件下演化的钥匙。此外,

太阳星云
太阳星云
对该类型陨石的研究还有助于认识太阳星云在径向上的物质组成变化规律。

1、极端还原条件下太阳星云的冷凝。尽管顽辉石球粒陨石形成于非常特殊的条件,但对该类陨石的研究自Keil(1968)的开创性工作以来进展缓慢,其中重要的因素是该类陨石缺少一些关键的岩石类型(如EL3)、样品少且极易风化。该项目通过对我国清镇陨石(EH3)和新发现的南极陨石MAC 88136(EL3)等系统对比研究,翻开了顽辉石球粒陨石研究的新章节(Lauretta, 2002, Meteorit Planet Sci, 37, 475-476)。通过该项研究,首次建立了极端还原条件下太阳星云中金属和各种硫化物的凝聚顺序,从高温到低温依次为:陨磷铁矿、陨硫钙矿、陨硫镁矿、金属相、闪锌矿-陨硫铁铜钾矿、各种铬硫化物;提出硫化物的四种成因机制,包括星云的气-固相凝聚、金属相的硫化反应、固相出熔、矿物的分解等;提出星云凝聚早期存在高温熔融事件的观点和证据;提出EH较EL群形成于更加还原的星云条件,并首次明确给出这两个化学群陨石母体岩石矿物学特征上的主要异同点和相应的分类参数。

2、极端还原条件下小行星的热变质。在界定了EH和EL群陨石母体初始岩石矿物学特征之异同点的基础上,通过与其他不同热变质程度的各岩石类型陨石进行对比,确定了EH和EL群顽辉石球粒陨石的热变质温度及其在母体中的冷却速率,给出与这两个重要陨石母体热变质历史相关的重要限制条件(Lauretta, 2002);提出强还原条件下陨石热变质伴随还原反应的观点和证据,以及EH群陨石母体撞击破碎重新堆积的新模型。此外,根据EH、EL群球粒陨石与熔融分异形成的顽辉石无球粒陨石之间在岩石矿物学矿物微量元素等方面的对比,对长期争议的顽辉石无球粒陨石的母体进行了讨论,并给出有关限定条件

3、太阳星云极端还原区域的太阳系外物质。从形成于太阳星云极端还原区域的清镇陨石中首次分离出大量太阳系外物质,通过对其中部分样品的C,N,Si等同位素分析,首次在顽辉石球粒陨石中发现超新星成因类型的Si3N4;发现新的29Si相对贫化的超新星成因类型SiC,其同位素组成与超新星理论模型给出的结果非常吻合,表明可能存在多种超新星或不同圈层来源的太阳系外物质。通过与形成于太阳星云氧化区域的碳质球粒陨石中的太阳系外物质对比,提出太阳系外物质在原始太阳星云中不均一分布的观点和证据。

凝聚模型编辑本段回目录

太阳星云
太阳星云
研究太阳星云形成太阳系各天体的化学演化过程的理论模式。20世纪60年代以来,人们根据陨石和行星化学成分的研究资料,在假定的太阳星云条件下,借助于物理-化学理论和太阳系起源理论,来探讨太阳系各天体形成的化学环境以及化学演化规律,提出的模型主要有 3类:热凝聚模型、冷聚集模型和等离子体凝聚模型

热凝聚模型 假定具有宇宙丰度的均匀太阳星云最初温度很高,其中的物质完全处于气体状态。伴随星云冷却,元素按其化合物或自身的难熔程度依次凝聚。

拉里莫(J.W.Larimer)和安德斯(E. Anders)的热凝聚模型中,讨论了两种极端情况:
①快冷却,各种物质随温度降低而依次凝聚,固相与气相之间没有扩散平衡,是纯元素和化合物的凝聚;
②慢冷却,凝聚物之间以及气体-凝聚物之间完全扩散平衡,可形成合金和固熔体。实际凝聚情况介于快冷却和慢冷却之间。

按温度降低顺序,太阳星云的化学演化可划分为几个阶段:
①难熔物的凝聚和分馏;
②金属-硅酸盐分馏;
③挥发物分馏,各种陨石中挥发成分的差异反映它们形成前温度、压力的不同。

巴谢(S.S.Barshay)和刘易斯(J.S.Lewis)用化学热力学原理研究了星云凝聚过程中的化学反应和行星的化学成分,讨论了气体凝聚过程的两种极端情况:
①平衡凝聚模型,温度下降缓慢,气体与疑聚物之间以及凝聚物之间在热力学平衡条件下发生反应,凝聚物成分只同当时星云的温度、压力及化学成分(或者说是热力学的“态函数”)有关,而同过去的热历史无关;
②非平衡凝聚模型,冷却凝聚进行得很快,气体凝聚物之间,甚至凝聚物之间不发生反应,凝聚物依次很快地被吸积到星体上,导致星体上形成由不同凝聚物构成的洋葱状层次结构。

两种模型的凝聚过程和生成物不同。一般认为,难熔物可能是平衡凝聚产物,大多数挥发物是非平衡凝聚产物。平衡凝聚模型能较好地说明类地行星的密度和化学成分。平衡凝聚物的稳定范围。图[太阳星云平衡凝聚物质的稳定范围]中各曲线间的区域表示相应凝聚物的稳定范围,曲线旁的符号代表相应的凝聚物:W曲线之上为气相区;W为高温难熔物;CaTiO3为钙钛矿和其他难熔氧化物(包括Al、Ca、Ti、V、稀土、U和Th的化合物);Fe为铁及 Fe-Ni合金,右上三角区是熔融铁的稳定范围;冰为水冰、NH3冰和 CH4冰。绝热线为卡梅伦星云模型的温度和压力分布,绝热线上也标出了各行星形成区的温度和压力范围。水星形成于较高温度区,主要由难熔金属矿物、Fe-Ni合金和少量顽火辉石组成,因而密度大;金星不但吸积类似于组成水星的物质,还吸积顽辉石和许多钾钠硅酸盐矿物,但不含硫和水;地球吸积大量透闪石、一些含水硅酸盐,以及金属铁、氧化铁和硫化铁;火星吸积大量含水硅酸盐、氧化铁和硫化铁;小行星可由各种岩石矿物组成,但不含有;小行星区以外的外行星主要吸积气体(冥王星可能除外)、冰物质和一些岩石物质,它们的大气可用非平衡凝聚模型解释,但对于行星本身还不能肯定哪种凝聚模型更适用。

伍德(J.A.Wood)用化学热力学原理研究了太阳星云冷却过程中的矿物平衡凝聚序列(图3[ 太阳星云的矿物平均凝聚序列])。图[太阳星云的矿物平均凝聚序列]中标出了各天体的吸积温度:水星约1400K,金星约900K,地球约600K,火星约450K,小行星及碳质球粒陨石约300K,木星的卫星约200K。

冷聚集模型 克莱顿(D. D.Clayton)认为太阳星云为冷的恒星气体和尘埃,直接聚集形成太阳系天体。星际介质中的尘埃有 3种来源:超新星爆发抛出的热凝聚物;巨恒星抛出的热凝聚物;冷星云中的非热结合物。星际物质(“前

太阳星云
太阳星云
凝聚物”)中存在化学同位素分馏。它的主要特征是:超新星热凝聚物富含难熔的Ca、Al和Ti氧化物,巨恒星热凝聚物富含s过程核素(见),星际气体中含Ca、Al和Ti较少,O主要在冷区凝聚为H2O,冷星云中的非热凝聚物富含挥发物。这种分馏是决定太阳星云初始组成的关键因素。在温暖的太阳星云盘中,只有非热化合物中的挥发物才发生蒸发和再凝聚作用。由于聚集形成星体的气体和尘埃的比例不同,加以母体内的固体化学作用,产生陨石的化学和同位素异常。

等离子体凝聚模型   和阿亨尼斯(G. O.S.Arrhenius)认为,实验室与空间的等离子体研究结果表明,传统的均一、平衡观念不正确,应代之以磁化等离子体的不均一、非平衡凝聚模型。他们提出,在先形成的,有磁场的中心天体(太阳或行星)周围有“源云”,源云中的粒子受中心天体引力作用而加速降落,因粒子之间碰撞电离而成为等离子体。由于中心天体的磁场作用,等离子体形成A、B、C、 D4个云,各云的主要成分由元素的电离电位决定,于是导致元素分馏。实际情况涉及原子―离子―分子―尘粒之间的相互作用。各云中除主要元素外,还含有其他混合物或杂质。中心天体周围的等离子体极不均匀并处于非热平衡状态,形成密度比邻区大的低温纤维结构──“超日珥”。超日珥中发生颗粒凝聚,形成轨道相近的颗粒流──“喷流”。喷流可以俘获与它碰撞的其他颗粒,并聚集形成行星或卫星。由各云凝聚物质成分的不同可解释各行星和卫星的化学差异。

星云正常的化学演化难以解释同位素组成的异常,可能有外来物质加入正在凝聚的太阳星云,使星云的化学成分具有原始的不均一性。因此,非平衡的太阳星云演化模型目前虽不够完善,却更有发展前景。

相关条目编辑本段回目录

星系    大气层        银河系    月球       天王星

参考资料编辑本段回目录

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 太阳星云

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。